Diurnal warming impacts on atmospheric and oceanic evolution during the suppressed phase of the Madden Julian Oscillation
Abstract:
Diurnally-varying SST is used as a conditional sampling parameter, along with AIRS/AMSU-A temperature and moisture profiles, surface winds, radiative and turbulent surface fluxes, and precipitation. We use composite daily average atmospheric BL depths, changes in lower-tropospheric stability, and moist static energy to evaluate changes in convective inhibition based on the diurnal variability of surface parcel characteristics due to turbulent heat fluxes, and compare with diurnal changes in cloud-radiative effects and precipitation. Argo floats and ocean modeling experiments are used to examine the upper ocean response. An ensemble of MJO simulations are generated using Argo profiles and satellite-derived surface forcing from which the systematic impacts of diurnal variability on the generation of the intraseasonal SST warming are evaluated. These simulations inform the importance of diurnal variations in surface boundary forcing to upper ocean mixing and the integrated contribution to SST warming over the typical duration of a suppressed phase of the MJO.