Alterations in Location, Magnitude, and Community Composition of Discrete Layers of Phytoplankton in Cold, Deep Waters Near the 1% Isolume of the Laurentian Great Lake Michigan Among Years With Dramatically Different Meteorological Conditions

Russell Lee Cuhel and Carmen Aguilar, University of Wisconsin Milwaukee, Milwaukee, WI, United States
Abstract:
Phytoplankton deep populations have dominated both biomass and productivity in deep basins of Lake Michigan for much of the anthropocene. In recent decades, chronically phosphorus-deficient waters have progressed from lower thermocline diatom assemblages in the 2000s to much deeper picocyanobacterial dominance in the late 2000s. Overwhelming establishment of benthic filter-feeding quagga mussels was instrumental in selection for picoplankton in the 2003-2007 time frame, but in 2008 a return to diatom dominance occurred in conjunction with monumental runoff from the Storm of the Century. Picoplankton gradually returned to significance in ensuing years, but suffered after lakewide ice cover and extremely slow spring warming of winters 2013-2015. Extremely calm summer conditions favored the picoplankton, and a decade of 1% light penetration of 50-60m has consistently enabled very deep productivity by several different divisions of algae. An unusual persistent south wind with basin-scale upwelling stimulated a return of fall diatom bloom for the first time in 2015. Repeated expeditions to offshore deep stations (100-150m) with detailed water sampling based on hydrographic observations often include thin peaks of biogenic silica (diatoms, chrysophytes) offset from one or more distinct layers of picocyanobacteria and mixed eucaryotic phytoplankton. In 2014 large, stable populations of the diatom Tabellaria sp. flourished at 50-60m with highly shade-adapted photosynthetic characteristics but assimilation numbers >1. In 2014-2015, picocyanobacterial maxima moved up in the water column and were dissociated from signals in either in vivo fluorescence or transmission. Physical structure, within-year basin physics sequence timing, and now seemingly ammonium availability may each contribute to phytoplankton ecology in this ocean-scale freshwater ecosystem.