AUV and Aircraft Measurements of an Internal Hydraulic Jump at the Mouth of the Columbia River

Craig L McNeil, Applied Physics Lab, Univ of Washington, Seattle, WA, United States
In 2013, an extensive 3-km long persistent hydraulic jump in the Mouth of the Columbia River (MCR) was captured in a joint pilot study involving coordinated autonomous and remote sensing observations. Airborne thermal infrared (IR) cameras provided observations of surface brightness temperature, while an along-track interferometric synthetic aperture radar (ATI-SAR) measured surface velocity and roughness. Subsurface hydrographic surveys were conducted with a REMUS autonomous underwater vehicle (AUV). These observations showed a flow- oblique stationary front that persisted through most of an ebb-tide. A pronounced dip and divergence (mixing) of the isohaline surfaces downstream of the surface front suggested that the newly-discovered feature is an internal hydraulic jump. Hydraulic jumps reduce kinetic energy of a laminar flow, partially converting it to turbulent kinetic energy that, in turn, increases the potential energy of the system via mixing. Our goal is to quantify this mixing associated with the MCR jump using our existing data, and more generally assess the jump’s impact on the physics and biology of the lower estuary, plume, and coastal ocean.