Back-barrier and seabed sediment dynamics in the Albemarle-Pamlico estuarine system, North Carolina

John P Walsh, East Carolina University, Institute for Coastal Science and Policy, Greenville, NC, United States and David Reide Corbett, East Carolina University, Department of Coastal Studies, Greenville, NC, United States
Abstract:
Estuaries are critical habitats as well as places where people live, recreate, and make their livelihood. Additionally, they are sites where land and sea interact, and sediments, and associated pollutants and carbon, are deposited, remobilized and accumulated. Many processes, such as river discharge, waves, tides, and sea-level rise, are operating in estuaries to cause sediment dynamics, impacting humans and organisms as a result. Recent research we have been engaged in across the Albemarle-Pamlico Estuarine System (APES) has investigated the sediments dynamics of this important estuary.

The APES is the second largest estuary in the continental United States, consisting of the Albemarle and Pamlico sounds and the Pamlico River and Neuse River sub-estuaries. Although expansive in size, the system is shallow with minimal tidal range. Water and sediment discharge into the APES is modest, and the existence of few inlets along the Outer Banks limits mixing with the Atlantic Ocean. Human impact on the drainage basin and estuarine system is moderate and increasing over time.

Over the last five years, a considerable volume of sedimentary process data has been collected over various timescales and locations in the APES. More specifically, work has included: deployments of instrumented tripods to examine seabed dynamics; collection and analysis of shallow cores and GIS investigation of aerial photographs and other data. This wealth of data highlights several insights: 1) shorelines are generally eroding (~0.25 m/y and rapidly >3 m/y in places), but rates are temporally and spatially variable; 2) seabed resuspension is frequent, yet net accumulation of 2-4 mm/y is widespread in deeper locations; and 3) storms cause episodic, localized impacts (e.g., barrier breaches) on this large, shallow estuarine system.