Stable Isotope Signatures Suggest Different Feeding Strategies for Atlantic and Gulf Menhaden

Stacy L Smith, Delaware State University, Dover, DE, United States, Lonnie Christopher Gonsalves, Cooperative Oxford Laboratory, Oxford, MD, Megan Lamb, NOAA ECSC, Apalachicola NERR, Apalachicola, FL and Nivette Perez-Perez, Delaware State University, Natural Resources, Dover, DE, United States
Abstract:
Atlantic menhaden (Brevoortia tyrannus) is a keystone forage species that ranges on the Atlantic Coast from Nova Scotia to Florida. A related species, the Gulf menhaden (Brevoortia patronus) is found in the northern Gulf of Mexico from Florida to Texas. They each serve as prey for important recreational and commercial fish, such as blue fish, tuna and striped bass. Menhaden are filter feeders whose diets consist mostly of phytoplankton and zooplankton, and menhaden act as direct links between primary producers and larger valuable predators. In this study, we investigated and compared the isotopic signatures of water column nitrate (δ15N), bulk plankton and juvenile menhaden (δ 15N and δ 13C) collected from 5 sites in both the Choptank River, MD, and Apalachicola Bay, FL. We determined that menhaden inhabiting the temperate zone versus the sub-tropical region exhibited statistically different isotopic signatures, suggesting different feeding strategies. Choptank River menhaden were enriched 4‰ in δ 15N over Apalachicola Bay menhaden. Choptank River menhaden are mostly likely obtaining their diet from a higher trophic level (copepods, primary consumers) than Apalachicola Bay fish, who may consume more phytoplankton. The Choptank River menhaden also may be consuming more allochthonous material, and those from the Gulf area eat a more authochthonous diet. In addition, Atlantic menhaden collected from fresh water creeks versus those collected closer to the bay differed in their δ 13C compositions, depending on site collection, with creek fish being more depleted in the heavier carbon isotope. The δ 15N values of water column nitrate were similar at Choptank and Apalachicola sites.