Phytoplankton and microzooplankton growth and grazing dynamics in Kaneohe Bay, Hawaii, a subtropical estuarine coastal embayment

Karen E Selph1, Mchelle Jungbluth1, Erica Goetze1, Stephanie Chang1, Michelle Uchida2 and Galiel Kolker1, (1)University of Hawaii at Manoa, Oceanography, Honolulu, HI, United States, (2)University of Hawaii at Hilo, Hilo, HI, United States
Abstract:
This presentation will describe growth and mortality rates of phytoplankton, and the response of their primary consumers, in Kaneohe Bay, Hawaii, a subtropical coastal embayment. This study includes data from both dry and wet conditions, the latter where local storms increase stream flow, which in turn introduces macronutrients to surface waters of the bay, resulting in phytoplankton blooms. Phytoplankton growth and mortality rates are estimated using the seawater dilution method in 9 experiments conducted over a range of initial fluorometric chlorophyll a (Chl) conditions (i.e., from 0.3 to >1 µg Chl/L). Samples were also collected for determining the population dynamics of ciliates, dinoflagellates, and metazoan nauplii. Net growth rates could always be described with a linear negative regression as a function of dilution factor. In 2 experiments, the assumption that adding nutrients only affected the growth, and not the mortality, rates of the phytoplankton was tested and confirmed. The dominant picophytoplankton, Synechococcus (SYN), had cell-specific growth rates of 0.4 – 1.7 d-1, and positive net growth in all but one experiment. With the exception of 2 experiments conducted during and just after a diatom bloom, other pico- and nano-eukaryotic phytoplankton had negative cell-based growth rates, and mortality varied widely, from -0.22 to 0.94 d-1. Most experiments (5/9) showed higher growth with added macronutrients (ammonium and phosphorus), suggesting nutrient limitation. Microzooplankton biomass was relatively evenly partitioned between ciliates and dinoflagellates, however abundance was dominated by 10-20 µm (length) aloricate oligotrich ciliates, except for during a diatom bloom, where large (>30 µm length) ciliate mixotrophs and gymnodinoid dinoflagellates contributed to a ~7-fold increase in micrograzer biomass. Thus, during episodic storm events, microzooplankton have elevated biomass, suggesting that some fraction of the increased production is available for higher trophic levels.