Nutrients, high light, and shallow depths favor the expansion of the brown macroalgae Turbinaria ornata in the coral reefs of Mo'orea, French Polynesia

Jonathan Rogers1, Guadalupe Cordoba2, Manuel Nieves3, Paul H Barber4, Peggy Fong4 and Shayna Sura4, (1)Hampton University, Hampton, VA, United States, (2)St. Mary's University, San Antonio, TX, United States, (3)University of Puerto Rico, Marine Biology, PR, United States, (4)University of California, Los Angeles, Ecology and Evolutionary Biology, Los Angeles, CA, United States
Abstract:
Coral reefs provide food, recreation and economic resources for billions of people. Despite this importance, anthropogenic stressors including climate change and nutrification threaten coral reefs globally, causing phase-shifts to algal dominated ecosystems and loss of coral habitats. Throughout the tropical South Pacific, the brown macroalgae Turbinaria ornata is expanding its range and now dominates areas where corals used to thrive, especially shallow areas on fringing reefs of French Polynesia. Abiotic factors like light and nutrient availability could enhance the expansion of T. ornata by promoting its growth or by making it physically tougher, which could reduce herbivory pressure and enhance its survival in high energy zones. To understand the abiotic factors favoring growth and survival of T. ornata in Mo'orea, French Polynesia, we conducted a field experiment testing the effect of nutrients (+/- fertilizer), depth (1m within Turbinaria zone, 1.5m at border, 2m below depth distribution), and light (+/- shade) on the growth and toughness of T. ornata. Three-factor ANOVA showed that an interaction between nutrients and light favored T. ornata biomass accumulation (p=0.04). In addition, T. ornata from shallow depths were significantly tougher than intermediate depths (p=0.01). These results imply that nutrient enrichment combined with high light levels common in shallow coral reefs may promote growth and expansion of T. ornata to near-shore reef environments. Increased survival and population growth is likely further enhanced by increased toughness of T. ornata in shallow areas, which may limit herbivore grazing and improve survival in strong wave action or currents. Future research should examine whether reducing nutrient loading to coastal waters may limit the expansion of T. ornata in the South Pacific.