Using color as a proxy for symbiont density to assess health in the facultatively symbiotic northern coral, Astrangia poculata

Rody Seballos, Ohio Northern University, Ada, OH, United States; University of Massachusetts Boston, School For The Environment, Boston, MA, United States, Elizabeth M Burmester, Boston University, Department of Biology and Marine Biology Program, Boston, MA, United States; New England Aquarium, Boston, MA, United States and Randi Rotjan, Boston University, Boston, MA, United States; University of Massachusetts Boston, Boston, MA, United States
Abstract:
Unlike most tropical corals, the northern star coral, Astrangia poculata, can survive and thrive with and without its photosynthetic endosymbionts, Symbiodinium psygmophilum. The degree of symbiosis is dependent on symbiont cell density, but the measurement of cell density is de facto destructive. We therefore explored the use of color (RGB) as a non-destructive proxy for symbiont state, building on the methods of Dimond and Carrington (2008). RGB color values, derived from a custom image analysis tool built in Matlab, were used to determine the inferred chlorophyll density of corals throughout an 8 week period. We found that non-destructive color analysis was a good metric to describe symbiotic state. To explore this method in an experimental context, we manipulated the impact of host condition (fed vs. starved) on the likelihood of wound healing in both symbiotic and aposymbiotic states. No difference was observed between either wounding or nutrition treatments, indicating that symbiotic state is likely controlled by other factors. In tropical corals, assessing the breakdown of symbiosis is an important predictor of holobiont stress, and colorimetric methods have been used to assess the extent of bleaching. Our method instead explores the spectral quality and extent of pigmentation to infer chlorophyll densities and symbiont cell densities, thereby extending the use of nondestructive methods to explore the strength of symbiosis.