A day in the life of Prochlorococcus: Diel ecological oscillations of cyanobacteria, viruses and grazers in the North Pacific Subtropical Gyre
A day in the life of Prochlorococcus: Diel ecological oscillations of cyanobacteria, viruses and grazers in the North Pacific Subtropical Gyre
Abstract:
Prochlorococcus is the most abundant photosynthetic organism on Earth and plays a key role in oligotrophic oceans such as the North Pacific Subtropical Gyre (NPSG). Theory suggests that light availabilty and size-dependent processes are core drivers of growth and mortality in oceanic ecosystem communities. A key question is how much viruses contribute to the mortality of phytoplankton relative to grazers. Motivated by timeseries measurements made via Lagrangian sampling in the NPSG we assess population dynamics of Prochlorococcus, micrograzers and viruses over daily timesecales. To understand this dataset we developed a size-structured dynamical model of Prochlorcoccus cells whose growth is light dependent and are subject to infection by viruses and to ingestion by grazers. Using our process-based model we are able to evaluate how in situ ecological rhythms compare with in silico ecological rhythms. In particular, we assess the strength of virus-induced mortality relative to grazing mortality in the NPSG and explore the sensitivity of this balance with respect to model parameterization. Our study provides a methodology for bridging community-level data from a variety of sources with dynamical modelling to explain ecosystem processes on short-term daily timescales. Preliminary results show that our model is capable of recapitulating ecosystem dynamics observed in the NPSG. Within this system, our model suggests that Prochlorococcus mortality peaks during the night and that grazing mortality is much greater than viral-induced mortality. Whilst phytoplankton growth is light-driven, we suggest that NPSG data is best fit by a model in which grazing and infection processes are also driven in a diel manner. More generally, we investigate potential drivers of the differential importance of viral lysis relative to grazer mortality and assess potential variations of population dynamics on daily timescales. Our results help drive our understanding of the dynamics, processes and the functioning of oceanic ecological communities across daily timescales.