NH33B-3899:
Challenges in Assessing Seismic Hazard in Intraplate Europe

Wednesday, 17 December 2014
Esther Hintersberger, University of Vienna, Vienna, Austria, Simon Kuebler, LMU Munich, Munich, Germany, Angela Landgraf, University of Potsdam, Potsdam, Germany and Seth A Stein, Northwestern University, Evanston, IL, United States
Abstract:
Intraplate regions are often characterized by scattered, clustered and migrating seismicity and the occurrence of low-strain areas next to high-strain ones. Increasing evidence for large paleoearthquakes in such regions together with population growth and development of critical facilities, call for better assessments of earthquake hazards. Existing seismic hazard assessment for intraplate Europe is based on instrumental and historical seismicity of the past 1000 years, as well some active fault data. These observations face important limitations due to the quantity and quality of the available data bases. Even considering the long record of historical events in some populated areas of Europe, this time-span of thousand years likely fails to capture some faults’ typical large-event recurrence intervals that are in the order of tens of thousands of years. Paleoseismology helps lengthen the observation window, but only produces point measurements, and preferentially in regions suspected to be seismically active. As a result, the expected maximum magnitudes of future earthquakes are quite uncertain, likely to be underestimated, and earthquakes are likely to occur in unexpected locations. These issues in particular arise in the heavily populated Rhine Graben and Vienna Basin areas, and in considering the hazard to critical facilities like nuclear power plants posed by low-probability events.