B21G-0121:
Do Vermont’s Floodplains Constitute an Important Source of Labile Carbon?

Tuesday, 16 December 2014
Julia N Perdrial, University of Vermont, Burlington, VT, United States, Aundrea Dolan, Coastal Carolina University, Conway, SC, United States and Mae Kemsley, College of Wooster, Wooster, OH, United States
Abstract:
Floodplains are extremely heterogeneous landscapes with respect to soil and sediment composition and can present an important source of carbon (C) during floods. For example, stream bank soils and sediments are zones of active erosion and deposition of sediment associated C. Due to the presence of plants, riparian soils contain high amounts of C that is exchanged between stream waters and banks. Abandoned channels and meander wetlands that remain hydrologically connected to the main channel contain high amounts of organic matter that can be flushed into the stream during high discharge.

This heterogeneity, result of floodplain geomorphology, land cover and use, can profoundly impact the amount and type of dissolved organic matter (DOM) introduced into streams. In order to assess DOM characteristics leached from heterogeneous floodplain soils, aqueous soil extracts were performed on soil samples representative of different land covers (n=20) at four depths. Extracts were analyzed for dissolved organic C and total dissolved nitrogen with a Shimadzu C analyzer. Colored dissolved organic matter characteristics was measured with the Aqualog Fluorescence Spectrometer and quantified with parallel factor analysis (PARAFAC).

Preliminary data from three floodplains in Vermont (Connecticut, Missisquoi and Mad River) show a 3D variability of longitudinal, lateral, and vertical extents on water-extractable, mobile C. Dissolved organic carbon concentrations in meander swamp samples were found up to 9 times higher than in those of soils from agricultural field indicative of an important C source. Although C concentrations in adjacent fields were low, high abundance of labile C (indicated by tryptophan-like fluorescence) in water extracts from fields indicates recent biological production of C. This labile C is easily processed by microbes and transformed to the greenhouse gas CO2. These results provide important information on the contribution and lability of different floodplain areas (banks, riparian areas and meander wetlands) to C export and can help to make predictions for their export during flooding.