PP21A-1291:
Nondestructive X-Ray Computed Tomography Analysis of Sediment Cores: A Case Study from the Arctic Ocean
Tuesday, 16 December 2014
Emma Oti1, Leonid V Polyak2, Ann Cook3 and Geoffrey Dipre2, (1)Ohio State University Main Campus, Columbus, OH, United States, (2)Byrd Polar Research Center, Columbus, OH, United States, (3)OSU Earth Sciences, Columbus, OH, United States
Abstract:
Investigation of marine sediment records can help elucidate recent changes in the Arctic Ocean circulation and sea ice conditions. We examine sediment cores from the western Arctic Ocean, representing Late to Early Quaternary age (potentially up to 1 Ma). Previous studies of Arctic sediment cores indicate that interglacial/interstadial periods with relatively high sea levels and reduced ice cover are characterized by vigorous bioturbation, while glacial intervals have little to no bioturbation. Traditional methods for studying bioturbation require physical dissection of the cores, effectively destroying them. To treat this limitation, we evaluate archival sections of the cores using an X-ray Computed Tomography (XCT) scanner, which noninvasively images the sediment cores in three dimensions. The scanner produces density sensitive images suitable for quantitative analysis and for identification of bioturbation based on size, shape, and orientation. We use image processing software to isolate burrows from surrounding sediment, reconstruct them three-dimensionally, and then calculate their surface areas, volumes, and densities. Preliminary analysis of a core extending to the early Quaternary shows that bioturbation ranges from 0 to approximately 20% of the core’s volume. In future research, we will quantitatively define the relationship between bioturbation activity and glacial regimes. XCT examination of bioturbation and other sedimentary features has the potential to shed light on paleoceanographic conditions such as sedimentation patterns and food flux. XCT is an alternative, underexplored investigation method that bears implications not only for illustrating paleoclimate variations but also for preserving cores for future, more advanced technologies.