An Early Middle Eocene Orbital Scale Benthic Isotope Record From IODP Site 1408, Newfoundland Rise

Tuesday, 16 December 2014
Fei Wu1, Nicolette Lawler1, Donald E Penman1, James C Zachos1, Sandra Kirtland Turner2, Richard D Norris2, Paul A Wilson3 and Pincelli M Hull4, (1)University of California Santa Cruz, Santa Cruz, CA, United States, (2)Scripps Institution of Oceanography, La Jolla, CA, United States, (3)University of Southampton, Southampton, United Kingdom, (4)Yale University, Department of Geology and Geophysics, New Haven, CT, United States
The long-term Paleogene global cooling trend and eventual glaciation of Antarctica has been attributed to a reduction in greenhouse gas levels as well as changes in the configuration of high-latitude oceanic gateways. This major trend in climate and forcing is known to have initiated in the early middle Eocene, between 44-49 Mya, yet our understanding of the detailed evolution of climate and oceanic circulation and carbon chemistry of this critical interval has been limited for lack of high-resolution proxy climate records. Integrated Ocean Drilling Program (IODP) Expedition 342, designed in part to address this deficiency, successfully recovered highly expanded sequences of middle Eocene sediment from multiple sites in the western North Atlantic, with several sites characterized by high sedimentation rates (>2.8 cm/kyr) and pronounced lithologic cycles. Using samples from cores recovered at one of these sites, 1408, located on Southeast Newfoundland Ridge, we are reconstructing the first orbital-scale deep sea δ18O and δ13C records spanning a ~1.6 million year interval (~Chron 20r) of the middle Eocene. Based on analyses of benthic foraminifer N. truempyi, our preliminary data reveal distinct high-frequency cycles with periods matching those of the orbital cycles, particularly precession and obliquity. Cross spectral analysis of δ18O, δ13C and lithologic records reveal a high degree of coherency, implying a high sensitivity in local sediment fluxes and bottom water chemistry (and circulation) to orbital forcing. Also, given the location and depth (~2600 m at 50 Ma), Site 1408 constrains the end-member composition of northern component bathyal bottom waters so that comparison with benthic isotope records from the south Atlantic and other basins can be used to assess ocean circulation patterns in the mid-Eocene. In general, bottom water temperatures appear to have been warmer, and DIC δ13C lower than observed elsewhere. Thus, our preliminary results are consistent with the absence of significant bottom water production in the North Atlantic at this time. This record will eventually be part of a longer Eocene record being assembled by a consortium of Expedition 342 Scientists.