C41B-0339:
Hazards Associated with High Altitude Rain-Fed Lakes (HARL) in the Overdeepened Deglaciated Region of Hindu Kush and Himalaya

Thursday, 18 December 2014
Umesh K Haritashya and Tanner Glay Hess, University of Dayton, Dayton, OH, United States
Abstract:
Mountain regions are changing rapidly as a result of climate change. It has been well established that these mountain regions are experiencing rapid glacier retreat. With accelerated retreat, glacial melt runoff can accumulate in an overdeepened glacier bed left behind by the receding glacier and can be bound by the walls of unstable frontal and lateral moraines to form a hazardous lake. However, when smaller glaciers retreat and downwaste they no longer contain enough ice to sustain the flow of water and maintain level of the lake. Furthermore, some smaller glaciers in the Hindu Kush and Himalayan region are observing extreme downwasting, which are either turning them into a rock glacier or heavily debris covered glacier leading to the reduced ice melt. Consequently, it is important to study these overdeepened beds, which are contained by the unstable mass. This is especially significant considering the great degree of complexity in the mountain weather system and recent examples of high intensity and short duration rainfall in the Hindu Kush region of Afghanistan, Karakoram region of Pakistan, and Central Himalayan region of India and Nepal. A precise understanding of mountain climate system is necessary, but so does these potentially deglaciated overdeepened beds where rain-fed lakes can form and increase systems hydrostatic pressure that can breach moraine containment and flood entire downstream region. Once lake has formed it possesses hydrological characteristics that are similar to the glacial lakes, which are known to put lives and infrastructure in danger. Therefore, in this study we evaluated overdeepened beds that are located in the complex topography and contained by abandoned or unstable lateral moraine using field and remote sensing satellite images. Our results provide degree of failure associated with these lakes based on the complex spatial and topological analysis as well as orographic distribution of the region. Such studies are not common in the region owing to the lack of field observations, high degree of uncertainty associated with whatever limited field data is available, difficulty in satellite-based assessment, unpredictability with the precipitation pattern, and inadequate local or fine resolution downscaled climate models.