S13C-4466:
MULTIMERMAID for Mariscope. A dedicated Accoustic Float for Monitoring of the Oceans

Monday, 15 December 2014
Yann Hello1, Sebastien Bonnieux1, Jean Fran├žois Argentino2, Manuk Yegikyan2 and Guust Nolet3, (1)GeoAzur, Valbonne, France, (2)Osean, LE PRADET, France, (3)GeoAzur/UNSA, Sophia Antipolis, France
Abstract:
Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions, mostly because of the large cost associated with deploying ocean-bottom seismometers. At the same time, several thousand free-drifting profiling floats measure the temperature, salinity and current of the upper 2000 m of the ocean in the Argo program, but are incapable to record and transmit seismic signals.

Simons et al. (JGR, 2009) developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. We built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean. Since 2012, these floats have been deployed in the Mediterranean, in the South Indian Ocean, and more recently near the Galapagos islands in the Pacific (see abstract by Nolet et al.).

A new prototype " MultiMermaid " spherical is at present in final phase of validation. Using a 37" glass sphere, the lithium battery capacity is greatly superior to that of the Mermaid. It has an instrument compartment that allows for multidisciplinary observations (seismic and kHz acoustics, magnetic field, temperature, bathymetry) and will be programmable. The maximum depth will be 3-4 km. Battery consumption by the pump has been reduced, and the durability depends mostly on CPU usage while drifting, amount of data transmitted but should be five years or more. The Multimermaid can serve biologists by providing a global monitoring of whale and dolphin sounds, seismic tomography by providing worldwide coverage of P wave arrival times, and oceanographers by providing ocean temperature, bathymetry and information on deep currents. Based on an ARM-Cortex M4 microprocessor, Multimermaid can accept any new features such as the possibility of a local rapid response network in which the instruments locate themselves while under water, and provided the possibility for users to modify monitoring software after deployment. In order to extend the life time of Multimermaid we are also investigating to add an optional green renewable power source.