A52F-05:
Vegetation-mediated Climate Impacts on Historical and Future Ozone Air Quality

Friday, 19 December 2014: 11:20 AM
Amos P. K. Tai1, Yu Fu1, Loretta J. Mickley2, Colette L Heald3 and Shiliang Wu4, (1)Chinese University of Hong Kong, Earth System Science Programme, Hong Kong, Hong Kong, (2)Harvard University, Engineering and Applied Sciences, Cambridge, MA, United States, (3)Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA, United States, (4)Michigan Technological University, Geological and Mining Engineering and Sciences, Houghton, MI, United States
Abstract:
Changes in climate, natural vegetation and human land use are expected to significantly influence air quality in the coming century. These changes and their interactions have important ramifications for the effectiveness of air pollution control strategies. In a series of studies, we use a one-way coupled modeling framework (GEOS-Chem driven by different combinations of historical and future meteorological, land cover and emission data) to investigate the effects of climate-vegetation changes on global and East Asian ozone air quality from 30 years ago to 40 years into the future. We find that future climate and climate-driven vegetation changes combine to increase summertime ozone by 2-6 ppbv in populous regions of the US, Europe, East Asia and South Asia by year 2050, but including the interaction between CO2 and biogenic isoprene emission reduces the climate impacts by more than half. Land use change such as cropland expansion has the potential to either mostly offset the climate-driven ozone increases (e.g., in the US and Europe), or greatly increase ozone (e.g., in Southeast Asia). The projected climate-vegetation effects in East Asia are particularly uncertain, reflecting a less understood ozone production regime. We thus further study how East Asian ozone air quality has evolved since the early 1980s in response to climate, vegetation and emission changes to shed light on its likely future course. We find that warming alone has led to a substantial increase in summertime ozone in populous regions by 1-4 ppbv. Despite significant cropland expansion and urbanization, increased summertime leafiness of vegetation in response to warming and CO2 fertilization has reduced ozone by 1-2 ppbv, driven by enhanced ozone deposition dominating over elevated biogenic emission and partially offsetting the warming effect. The historical role of CO2-isoprene interaction in East Asia, however, remains highly uncertain. Our findings demonstrate the important roles of land cover and vegetation in modulating climate-chemistry interactions, and highlight aspects that warrant further investigation.