Biogenic VOC and Climate

Friday, 19 December 2014: 11:05 AM
Alex B Guenther, Pacific Northwest National Laboratory, Richland, WA, United States; Washington State University, Pullman, WA, United States
Secondary organic aerosol (SOA) and ozone are short-lived contributors to radiative forcing that can drive relatively rapid changes in climate. They are not emitted into the atmosphere but are formed from precursors including biogenic volatile organic compounds (BVOC) that are emitted from terrestrial ecosystems. BVOC can also impact longer-lived climate-relevant compounds by acting as a sink for the oxidants that remove moderately reactive gases such as methane and by being a source of carbon dioxide. Emissions of BVOC are highly temperature sensitive, and some also respond to light, and so there is a potential feedback coupling between climate and BVOC emissions. Another potential feedback is associated with the water cycle since SOA can influence precipitation by serving as cloud condensation nuclei and because VOC emissions are sensitive to water availability. Anthropogenic air pollutants add to the complexity of this coupled system by enhancing the production of ozone and SOA from BVOC. The role of BVOC in the land-atmosphere-climate system and potential feedback couplings is conceptually clear but developing an accurate quantitative representation is challenging. Our current understanding of the role of BVOC in the climate system and potential feedback couplings will be presented and the major uncertainties will be discussed. Advances in observations for constraining models, including long-term measurements and recent multi-scale studies, will be presented and priorities for continued advances will be discussed.