GC32B-07:
Fuel for the Fire: Improved Understanding of Fire Behavior in Africa Based on Partitioned Herbaceous and Woody LAI from MODIS Satellite Data

Wednesday, 17 December 2014: 11:50 AM
Milkah NJOKI Kahiu and Niall P Hanan, South Dakota State University, Brookings, SD, United States
Abstract:
Fire is an important recurrent phenomenon that determines the distribution of global savanna biomes and tree cover in savanna ecosystems. Tropical savanna fires are almost exclusively ground fires, fueled by senescent herbaceous material, with crown fires being rare. Analyses of satellite-based fire activity and burned area (active fires and burn-scars) in tropical savannas reveal a close correlation with satellite-based estimates of total net primary productivity (NPP) in drier savannas, and apparent limitation by rainfall (fuel moisture) in wetter systems. However, these analyses of fire frequency and extent at continental scales ignore the different roles played by the herbaceous and woody vegetation components in promoting and/or suppressing fire ignition and spread. In this research we hypothesized that, since herbaceous vegetation provides the primary fuel, fire frequency and burn areas in African savannas and seasonal woodlands should correlate more closely with measurements of herbaceous NPP or end of season leaf area index (LAI), than with the NPP or LAI of the tree layer. Similarly, while fire patterns may correlate with patterns of total LAI and total NPP across Africa, the relationship will be confounded by variations in tree cover.

Our objective is to understand how fire frequency and intensity vary with changes in herbaceous cover. To test our hypotheses we will use estimates of herbaceous and woody LAI that we have developed recently by partitioning MODIS LAI. We will explore how seasonal maximum herbaceous LAI and leaf area duration (LAD) (both potential proxies for accumulated fuel load) correlate with fire frequency in African savannas. We will demonstrate the MODIS LAI partitioning methodology, and present results on the divergent relationships between African savanna fires and total LAI, herbaceous LAI and herbaceous LAD.