Drivers of Recent Trends in African Landscape Fires

Wednesday, 17 December 2014: 11:35 AM
Niels Andela and Guido van der Werf, VU University Amsterdam, Amsterdam, Netherlands
Landscape fires play an important role in savannah ecosystem dynamics and are an important source of emissions of (greenhouse) gases and aerosols. Within the Monitoring Atmospheric Composition and Climate (MACC) project these fires are monitored using MODIS satellite data which now provides more than a decade of continuous observations. Africa is nowadays responsible for about 70% of global burned area and about 50% of fire carbon emissions, affecting regional air quality and global atmospheric composition.

Although it has been reported that fire activity varies according to climatic and anthropogenic influences, much remains unclear about the drivers of the spatial distribution of fire activity over the African continent and its temporal dynamics. Resolving the drivers of this spatiotemporal variability is crucial to understand the future role of fire on the African continent. We developed a model to account for variations in fire activity due to climate, and investigated the role of sea surface temperatures on rainfall patterns and thus fire dynamics. Spatial variation and trends in cropland extent were used to improve understanding of underlying trends caused by socio-economic changes.

Over 2001-2012, satellite observations indicate strong but opposing trends in the African hemispheres. Changes in precipitation, driven by the El Niño/Southern Oscillation (ENSO), which changed from El Niño to la Niña dominance over the study period, contributed substantially to the upward trend over southern Africa. This shift also contributed to the downward trend in northern Africa, but here rapid demographic and socio-economic developments contributed equally. Given the economic perspective of Africa and the oscillative nature of ENSO, future African savannah burned area will likely decline. Using MACC and GFED emissions estimates we expect that in the long term this decrease may be so substantial that forests may take over savannas as the main source of global fire emissions.