H31D-0645:
Examining Suitable Soil Regimes for Reestablishment of Camassia Quamash (Blue Camas), Flathead Indian Reservation

Wednesday, 17 December 2014
Jenna M Davis, University of Florida, Ft Walton Beach, FL, United States and Ashley M Bald, University of Idaho, Moscow, ID, United States
Abstract:
Soils are the foundation of all biotic communities and play a substantial role in facilitating the uptake of water and nutrients in many terrestrial plants. Plants can grow to their potential only if the soil supports an environment conducive to growth. Soil chemical composition and texture directly influence the rate of water and nutrient ion uptake in vegetation. Prairie Wetlands have experienced the most dramatic land use changes within the United States throughout the last century. Soils deteriorate from erosion, compaction, use of pesticides, herbicides, and fertilizers associated with agriculture and urbanization. Transitioning soil regimes in the US have been the impetus for numerous restoration activities that attempt to protect or remediate loss to native or functional plant groups. Success of plant restoration efforts is dependent on knowledge about regional soil regimes. Camassia Quamash (Blue Camas), an ephemeral wetland bulbaceous herb is a culturally significant edible plant to the Pacific Northwest tribes and was only surpassed as a subsistence trade commodity by Salmon. The literature about camas and suitable soil types for it to grow is limited. The Confederated Salish and Kootenai Tribes interest in restoring the plant to the Flathead Indian Reservation (FIR) prompted a series of research initiatives to document baseline parameters of remaining camas stands. Baseline soil conditions examining chemical regimes and soil textures on four FIR observed camas sites were analyzed. Samples indicated that remaining camas stands occurred in loamy nutrient rich prairie wetland to lightly forested soil regimes.