H31D-0646:
Biological Dimensions of Crack Morphology in Dryland Soils
Wednesday, 17 December 2014
Keita F DeCarlo, Marcus Spiegel and Kelly K Caylor, Princeton University, Princeton, NJ, United States
Abstract:
Macropores and cracks have an integral role in soil hydrology, and the physicochemical factors that induce them have been the subject of much laboratory research. How these processes translate to field soils, however, is often obfuscated by the biological elements present that complicate its formation and dynamics. In this study, we investigated the biological influence of herbivores and vegetation on 3D crack morphology in a dryland swelling soil (black cotton/vertisol). Fieldwork was conducted at and near the Kenya Long-Term Exclosure Experiment (KLEE) plots in Mpala, central Kenya, where three different soil regions were identified: highly vegetated areas, animal trails, and termite mounds. Crack networks were physically characterized by pouring liquid resin into the soil and excavating them when dry, after which they were imaged and quantified using medical magnetic resonance imaging (MRI). Cracking intensity of each cast was corrected via soil moisture and bulk density measurements at 5 cm intervals over 30 cm. 3D characterization of the soil system shows that mechanical compaction is a major influence in the formation of extensive and deep cracks in animal trails, with megaherbivores (e.g. elephants) inducing the most extreme cracks. Bioturbation is seen as a major influence in the formation of shallower cracks in termite mounds, as termites loosen and aerate the soil and reduce the soil's cohesive properties. Highly vegetated soils show a large degree of variability: small, disconnected soil patches induced by vegetative cover and a larger root network results in smaller and shallower cracks, but full vegetative cover induces deep and irregular cracks, possibly due to diverted rainfall. Our results highlight the intricate connections between the biology and physics that dictate soil processes in a complex soil system at the field scale.