Empirical sensitivity kernels of noise correlations with respect to virtual sources

Thursday, 18 December 2014
Pierre Boué1, Laurent Stehly2, Nori Nakata1 and Gregory C Beroza1, (1)Stanford University, Stanford, CA, United States, (2)ISTerre Institute of Earth Sciences, Saint Martin d'Hères, France
Cross-correlation of time-series, or interferometry, applied to the ambient seismic field is an established method to observe the propagation of waves between pairs of sensors without involving transient sources. These reconstructed waves are routinely used to develop high-resolution images of the crust and upper mantle, or in mapping the time-dependent velocity changes associated with tectonic events. Using similar methods, recent work have highlighted more challenging observations, such as higher mode surface wave propagation and body wave reconstruction at various scales of the Earth: from the industrial surveys at the reservoir scale to the global scale. Furthermore, the reconstruction of the correct amplitude information can be used to image the anelastic attenuation of the medium and has led to a new type of ground motion prediction using virtual earthquakes method. The dependability of such amplitude retrieval had been debated and represents a difficult challenge due to uneven source distribution. In this study, we discuss the possibility to use the correlation of ambient noise correlation (similar to C3 method) to map the contribution of different source locations for Rayleigh wave reconstruction between receiver pairs. These maps constructed in terms of traveltime or amplitude perturbations of the Green’s function, can be considered as empirical sensitivity kernels with respect to the contribution of each virtual source. We propose for the first time to map these kernels using a dataset of continuous records from a dense array of about 2600 sensors deployed at the local-scale in Long Beach (CA, USA). Finally, these maps are used to analyze the impact of the original ambient noise directivity on the recovered Green’s functions and discuss the effects of the velocity lateral heterogeneity within the array. We aim at understanding, and thereby reducing, the bias in ambient field measurements.