S44A-05:
Decay of Hurricanes Tracked by Dense Seismic Array

Thursday, 18 December 2014: 5:00 PM
Anne Lamontagne and Toshiro Tanimoto, University of California Santa Barbara, Santa Barbara, CA, United States
Abstract:
Tropical cyclones (hurricanes and typhoons) are mostly atmospheric phenomena but they also generate significant ground motions in the solid earth when they become strong. If a dense seismological array existed along the path of a hurricane, we could learn about some processes near the hurricane eye and the change of its intensity through seismic data.

We found a few cases of tropical cyclones that passed through the Transportable Array of Earthscope (TA) in the last four years. They provide some interesting time-evolving characteristics of hurricanes but in most cases seismic signals are too weak to gain any insight into the processes. The only exception we have found so far is Hurricane Isaac in 2012.

Hurricane Isaac was mostly a tropical storm during its lifetime but it became a hurricane about 12 hours before the first landfall at the mouth of the Mississippi river at 0000 UTC August 29. The eye then went back over the ocean, but stayed near the coast, and made landfall again at 0800 UTC August 29. After this landfall, it went through the TA. This gave us an opportunity to study the decay of this hurricane based on seismic data.

Our basic data are amplitude-distance plots for each 6-hour hurricane location. We confine our analysis to frequencies below 0.02 Hz because in higher frequency bands seismic waves were broader oceans, not necessarily near the hurricane eye. Right after the landfall, we found a sharp peak at about 75 km from the eye. This is most likely the location of the eyewall, where a strong ascending flow is known to exist. Over the next 12 hours, we see this peak deteriorate, which is undoubtedly related to the decay of the hurricane after landfall. The peak remained at the same location for these 12 hours and then in the following 18 hours started to move farther from the eye, to about 250 km. Therefore, we can monitor how the eyewall deteriorated over the 30 hours after landfall.

The emphasis of this study will be on Hurricane Isaac but we will also report other cases for comparison and to clarify what we can learn about the processes near the hurricane eye by seismic data.