GC51E-0468:
Greenland Ice Sheet Surface Roughness and Glacier Zones from MISR, 2000-2013
Friday, 19 December 2014
Anne Walden Nolin and Eugene Mar, Oregon State University, Corvallis, OR, United States
Abstract:
The surface of the Greenland ice sheet is shaped by wind, melt, and glacier dynamics. Surface roughness affects the surface-atmospheric interactions (via the aerodynamic roughness length) and thus influences fluxes of sensible and latent heat at the ice sheet surface. When combined with near-infrared reflectance, surface roughness has been shown to discriminate between glacier zones. We present the first ever annual time series of Greenland ice sheet surface roughness derived from the Multi-angle Imaging SpectroRadiometer (MISR) for the years 2000-2013. Our cloud-free multi-angular measurements are calibrated using airborne LiDAR data from the Airborne Topographic Mapper (ATM). Roughness values range from 10 cm in the dry, snow-covered interior of the ice sheet to over 8 m along the crevassed margins of the ice sheet. Roughness increases from April to July as the surface melts and glaciers become more active. Our roughness maps are restricted to spring and early summer due to limited ATM data. We next employed ISODATA unsupervised clustering with MISR near-infrared reflectance and surface roughness to map glacier zones on the ice sheet for years 2000-2013. The number and locations of the ISODATA-derived glacier zones are consistent from year to year with slight shifts in boundaries depending on the extent of early summer melt. These maps of Greenland ice surface roughness and glacier zones are the result of processing several hundred thousand MISR images and are the first ever full-coverage, annual maps of this kind.