P33A-4022:
Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.

Wednesday, 17 December 2014
Daniel C Berman and Matthew R Balme, Planetary Science Institute Tucson, Tucson, AZ, United States
Abstract:
Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today’s wind conditions, then we can begin to assess when and where TARs are/were active over Mars’ recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars.

In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits.

References:

[1] Balme, M.R., D.C. Berman, M.C. Bourke, and J.R. Zimbelman, Transverse Aeolian Ridges (TARs) on Mars, Geomorphology, 101, 703-720, 2008.

[2] Berman, D.C., M.R. Balme, S. Rafkin, and J.R. Zimbelman, Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages, Icarus 213, 116-130, 2011