S23A-4478:
Prediction of Future Great Earthquake Locations from Cumulative Stresses Released by Prior Earthquakes

Tuesday, 16 December 2014
Junhyung Lee and Tae-Kyung Hong, Yonsei University, Seoul, South Korea
Abstract:
There are 17 great earthquakes with magnitude greater than or equal to 8.5 in the world since 1900. The great events cause significant damages to the humanity. The prediction of potential maximum magnitudes of earthquakes is important for seismic hazard mitigation. In this study, we calculate the Coulomb stress changes around the active plate margins for 507 events with magnitudes greater than 7.0 during 1976-2013 to estimate the cumulative stress releases. We investigate the spatio-temporal variations of ambient stress field from the cumulative Coulomb stress changes as a function of plate motion speed, plate age and dipping angle. It is observed that the largest stress drop occur in relatively high plate velocity in the convergent margins between Nazca and South American plates, between Pacific and North American plates, between Philippine Sea and Eurasian plates, and between Pacific and Australian plates. It is intriguing to note that the great earthquakes such as Tohoku-Oki earthquake and Maule earthquake occur in the highest plate velocity. On the other hand, the largest stress drop occur in the margins with relatively slow plate speeds such as the boundaries between Cocos and North American plates and between Indo-Australian and Eurasian plates. Earthquakes occur dominantly in the regions with positive Coulomb stress changes, suggesting that post-earthquakes are controlled by the stresses released from prior earthquakes. We find strong positive correlations between Coulomb stress changes and plate speeds. The observation suggests that large stress drop was controlled by high plate speed, suggesting possible prediction of potential maximum magnitudes of events.