GP33A-3688:
Regional gravity and magnetic anomalies related to a Proterozoic carbonatite terrane in the eastern Mojave Desert, California

Wednesday, 17 December 2014
Kevin M Denton, David A Ponce, David M Miller and Clayton T Jernigan, U.S. Geological Survey, Menlo Park, CA, United States
Abstract:
One of the world’s largest rare earth element carbonatite deposits is located at Mountain Pass in the eastern Mojave Desert, California. The 1.4 Ga carbonatite deposit is hosted by and intruded into 1.7 Ga gneiss and schist that occurs in a narrow north-northwest trending belt along the eastern parts of Clark Mountain Range, Mescal Range, and Ivanpah Mountains. The carbonatite is associated with an ultrapotassic intrusive suite that ranges from shonkinite through syenite and granite. Regional geophysical data reveal that the eastern Mojave carbonatite terrane occurs along the northeast edge of a prominent magnetic high and the western margin of a gravity high along the eastern Clark Mountain Range.

To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 1900 gravity stations and over 600 physical rock property samples to augment existing geophysical data. Carbonatite intrusions typically have distinct gravity, magnetic, and radiometric signatures because these deposits are relatively dense, contain magnetite, and are enriched in thorium or uranium. However, our results show that the carbonatite is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31) and the associated ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). Although the carbonatite body is nonmagnetic, it occurs along a steep gradient of a prominent aeromagnetic anomaly. This anomaly may reflect moderately magnetic mafic intrusive rocks at depth.

East of the ultrapotassic intrusive rocks, a prominent north trending magnetic anomaly occurs in the central part of Ivanpah Valley. Based on geologic mapping in the Ivanpah Mountains, this magnetic anomaly may reflect Paleoproterozoic mafic intrusive rocks related to the 1.7 Ga Ivanpah Orogeny. Physical property measurements indicate that exposed amphibolite along the eastern Ivanpah Mountains are moderately magnetic with an average susceptibility of 26.7 x 10-3 SI (n=15). The north trending gravity anomaly along the eastern part of the Clark Mountain Range probably reflects dense gneissic rocks of a similar age, rather than the suite of relatively lower density ultrapotassic intrusive rocks.