PP23C-1400:
Vegetation Response to Holocene Variations in Climate and Fire Activity in Southwestern Oregon
Tuesday, 16 December 2014
Alicia White, Montana State University, Bozeman, MT, United States, Christy Briles, University of Colorado Denver, Geography and Environmental Science, Denver, CO, United States and Cathy L Whitlock, Montana State Univ, Bozeman, MT, United States
Abstract:
Past ecosystem responses to fire and climate change have been well studied in many parts of the Pacific Northwest, but forest history of the southern Cascades is poorly understood. Pollen and charcoal records from Hobart Lake (42.099°N, 122.482°W, 1458m) in southwestern Oregon were analyzed to reconstruct past changes in vegetation and fire activity. The watershed today supports mixed conifer forest of Abies, Pseudotsuga, Cupressaceae, and Pinus. From 8000 to 3500 cal yr BP, the forest had more xerophytic species, such as Pinus and Cupressaceae, and higher frequency of fires than at present, suggesting a climate that was warmer and drier than current conditions. The last 3500 cal years was characterized by increasing mesophytic taxa, such as Abies and Pseudotsuga, and decreasing fire activity; these trends are consistent with the establishment of cooler wetter conditions in the late Holocene. Changes in the abundance of Abies and Pseudotsuga pollen were compared at multiple sites to better understand their history in relation to long-term variations in climate and local disturbance. The pollen record suggests that Abies (i.e., Abies concolor, A. magnifica, A. amabilis or A. grandis) was abundant during the late-glacial period in a widespread subalpine forest that was present at all elevations. The genus declined in abundance during the early Holocene when it was best represented at higher elevations. Abies species gradually became more widespread and abundant during the mid- and late Holocene consistent with cooler conditions and expansion of closed mesic forest. Pseudotsuga was most abundant at low-elevation sites in the Coast and Cascade ranges during the early Holocene and then most abundant in more southern, mid-elevation sites in the Klamath and southern Cascade ranges in the late Holocene. Thus, the regional conifer history was strongly governed by variations in the summer insolation as they relate to changes in summer effective moisture.