GC13G-0733:
Future Climate Change Impacts on Surface Hydrology over Texas River Basins
Monday, 15 December 2014
Kyungtae Lee, Texas A & M University, College Station, TX, United States, Huilin Gao, Texas A&M University, College Station, TX, United States, Maoyi Huang, Pacific NW Nat'l Lab-Atmos Sci, Richland, WA, United States and Justin Sheffield, Princeton Univ, Princeton, NJ, United States
Abstract:
Future freshwater availability is a pressing issue in Texas due to frequent drought events and fast population growth. Even though the science community has well investigated future temperature trends, it is still unclear whether precipitation will increase or decrease in this region. Furthermore, there is a lack of understanding on how the changing climate will affect water resources across different spatial-temporal scales. This study aims to quantify the impacts of climate change on surface hydrology at the basin scale under different future emission scenarios. The Variable Infiltration Capacity (VIC) model, forced by an ensemble of statistically downscaled climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, is employed to predict the future hydrology. The VIC model parameters are adopted from the North American Land Data Assimilation System (NLDAS) at a spatial resolution of 1/8°. The CMIP5 projections contain four different scenarios in terms of Representative Concentration Pathway (RCP) (i.e. 2.6, 4.5, 6.0 and 8.5 w/m2). The analysis is carried out in three steps. First, the observed streamflows are used to evaluate the performance of VIC simulations forced by CMIP5 models during historical period. Second, VIC outputs under multiple CMIP5 model scenarios from 1950 to 2099 are analyzed to identify how soil moisture, evapotranspiration, runoff, and routed streamflows change in time and space. Third, the spatial patterns of seasonal temperature, seasonal precipitation, and the Palmer Drought Severity Index (PDSI)—over four 20-year periods (1980-1999, 2010-2029, 2040-2059 and 2080-2099)—are used to pinpoint the regions that will be most affected by climate change (among the 13 Texan river basins). Furthermore, the role of groundwater in meeting the increasing needs for water supply is discussed. The results are expected to contribute to various future water resources management decisions in Texas.