GC13G-0734:
Projected Changes in Seasonal Mean Temperature and Rainfall (2011-2040) in Cagayan Valley, Philippines

Monday, 15 December 2014
Joseph QUILANG Basconcillo1, Anthony Joseph R. Lucero1, Analiza S. Solis1, Hideki Kanamaru2, Robert S. Sandoval3 and Eulito U. Bautista3, (1)Philippine Atmospheric Geophysical and Astronomical Services Administration, Climatology and Agrometeorology Division, Quezon City, Philippines, (2)FAO, Rome, Italy, (3)Food and Agriculture Organization of the United Nations, AMICAF-Philippines, Quezon City, Philippines
Abstract:
Among Filipinos, a meal is most often considered incomplete without rice. There is a high regard for rice in the entire archipelago that in 2012, the country’s rice production was accounted to more than 18 million tons with an equivalent harvested area of 4.7 million hectares. This means that from the 5.4 million hectares of arable land in the Philippines, 11 percent are found and being utilized for rice production in Cagayan Valley (CV). In the same year, more than 13 percent of the country’s total annual rice production was produced in CV. Rice production also provides employment to 844,000 persons (out of 1.4 million persons) which suggest that occupation and livelihood in Cagayan Valley are strongly anchored in rice production.

These figures outline the imaginable vulnerability of rice production in CV amidst varying issues such as land conversion, urbanization, increase in population, retention of farming households, and climate change. While all these issues are of equal importance, this paper is directed towards the understanding the projected changes in seasonal rainfall and mean temperature (2011-2040). It is envisioned by this study that a successful climate change adaptation starts with the provision of climate projections hence this paper's objective to investigate on the changes in climate patterns and extreme events.

Projected changes are zonally limited to the Provinces of Cagayan, Isabela, Nueva Vizcaya, and Quirino based on the statistical downscaling of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and A2). With the idea that rainfall and temperature varies with topography, the AURELHY technique was utilized in interpolating climate projections. Results obtained from the statistical downscaling showed that there will be significant climate changes from 2011-2040 in terms of rainfall and mean temperature. There are also indications of increasing frequency of extreme 24-hour rainfall and number of dry days (especially in Tuguegarao City).

This study was forged in a partnership of PAGASA and FAO AMICAF. Further efforts to improve climate change adaptations in CV are directed towards provision of climate projections as input to crop and water resources modeling, market modeling, hunger and poverty reduction, and policy formulation.