Input of Terrestrial Palynomorphs since the Last Deglaciation from Sediments of the Chukchi Sea Shelf, Western Arctic Ocean

Tuesday, 16 December 2014
So-Young Kim1, Seung-il Nam1, Irina Delusina2 and Kyung Sik Woo3, (1)KOPRI Korea Polar Research Institute, Incheon, South Korea, (2)Univ. of California, Davis, Davis, CA, United States, (3)Kangwon National University, Chuncheon, South Korea
We report the palynology of marine sediment core ARA02B/01A-GC from the Western margin of the shallow shelf of the Chukchi Sea in the Arctic, a site which was synchronously influenced by climatic changes during the last deglaciation with those in the Bering Strait. The core contains a rich concentration of continental palynomorphs, even though the coring location is quite a distance from land. The catchment area for the observed palynomorphs includes the territories of both North America (Alaska and North Canada) and Northern Siberia (Chukotka peninsula and Northern East-Siberian coast). Based on this fact, we can reconstruct a common paleoenvironmental history for this location and the Bering Strait during the postglacial interval. We hypothesize that palynomorphs were carried to the sea during low sea-ice coverage intervals by large rivers (Yukon, Mackenzie and Siberian rivers) and were then transferred by oceanic currents. During intervals of extensive sea-ice coverage the source of the palynomorphs was predominantly eroded shelf sediments. The percentage ratio of tree-herb pollen and spores in the palynomorph assemblages shows that favorable conditions for an increase in forest vegetation took place between ~8 and 4 kyr BP, which coincides with maximum freshwater input to the sea. During a climatic optimum at ~5 kyr BP, as inferred from the total dominance of tree and herb pollen, the Chukchi Sea was apparently warmer than today. This represents the maximum ice-free period for the sea. The low sea-ice interval ended ~3 kyr BP, as suggested by a sharp drop in tree pollen, a reduction in fresh water input, and a drop in the concentration of the algae Pediastrum. Our data correlate well with data from marine core HLY0501-5 from the Bering Strait (Polyak et al., 2009) for the interval of 10-8 kyr BP, but shows a divergence since ~4 kyr BP, which may correspond to the beginning of the differentiation of North American and East-Siberian ecosystem zones.