PP21B-1338:
Paleoecological inferences of recent alluvial damming of a lake basin due to retrogressive permafrost thaw slumping

Tuesday, 16 December 2014
Roberto Quinlan1, Stephanie Delaney2, Scott F Lamoureux3, Steven V Kokelj4 and Michael FJ Pisaric2, (1)York University, Toronto, ON, Canada, (2)Brock University, St Catharines, ON, Canada, (3)Queen's University, Kingston, ON, Canada, (4)NWT Geosciences Office, Government of the Nothwest Territories, Yellowknife, NT, Canada
Abstract:
Expected climate impacts of future warming in the Arctic include thawing of permafrost landscapes in northern latitudes. Thawing permafrost is expected to have major consequences on hydrological dynamics, which will affect the limnological conditions of Arctic lakes and ponds. In this study we obtained a sediment core from a small lake (informally named “FM1”) near Fort McPherson, Northwest Territories, Canada, with a large retrogressive thaw slump (nearly 1 kilometre in diameter) within its catchment. A radiocarbon date from the base of the FM1 sediment core suggests the lake formed between 990-1160 Cal AD. The analysis of aerial photographs indicate the thaw slump initiated between 1970-1990, and sediment geochemistry analysis indicated major changes in sediment content at 54-cm sediment core depth. Analyses of subfossil midge (Chironomidae) fossils inferred that, pre-slump, lake FM1 was shallow with a large bog or wetland environment, with midge assemblages dominated by taxa such as Limnophyes and Parametriocnemus. Post-thaw midge assemblages were dominated by subfamily Chironominae (Tribe Tanytarsini and Tribe Chironomini) taxa, and the appearance of deepwater-associated taxa such as Sergentia suggests that lake FM1 deepened, possibly as a result of alluvial damming from slump materials washing into the lake near its outlet. Most recent stratigraphic intervals infer a reversion back to shallower conditions, with a slight recovery of bog or wetland-associated midge taxa, possibly due to rapid basin infilling from increased deposition rates of catchment-derived materials. Results emphasize that there may be a variety of different outcomes to Arctic lake and pond ecosystems as a result of permafrost thawing, contingent on system-specific characteristics such as slump location relative to the lake basin, and relative inflow and outflow locations within the lake basin.