GC41B-0540:
Assessment of Flood Vulnerability to Climate Change Using Fuzzy Operators in Seoul

Thursday, 18 December 2014
Moung-Jin Lee, KEI Korea Environment Institute, Seoul, South Korea
Abstract:
The goal of this study is to apply the IPCC(Intergovernmental Panel on Climate Change) concept of vulnerability to climate change and verify the use of a combination of vulnerability index and fuzzy operators to flood vulnerability analysis and mapping in Seoul using GIS. In order to achieve this goal, this study identified indicators influencing floods based on literature review. We include indicators of exposure to climate(daily max rainfall, days of 80㎜ over), sensitivity(slope, geological, average DEM, Impermeability layer, topography and drainage), and adaptive capacity(retarding basin and green-infra). Also, this research used fuzzy operator model for aggregating indicators, and utilized frequency ratio to decide fuzzy membership values. Results show that number of days of precipitation above 80㎜, the distance from river and impervious surface have comparatively strong influence on flood damage. Furthermore, when precipitation is over 269㎜, areas with scare flood mitigation capacities, industrial land use, elevation of 16∼20m, within 50m distance from rivers are quite vulnerable to floods. Yeongdeungpo-gu, Yongsan-gu, Mapo-gu include comparatively large vulnerable areas. The relative weight of each factor was then converted into a fuzzy membership value and integrated as a flood vulnerability index using fuzzy operators (fuzzy AND, fuzzy OR, fuzzy algebraic sum, and fuzzy algebraic product). Comparing the results of the highest for the fuzzy AND operator, fuzzy gamma operator (γ = 0.2) is higher with improved computational. This study improved previous flood vulnerability assessment methodology by adopting fuzzy operator model. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing flood mitigation policies.

Acknowledgements: The authors appreciate the support that this study has received from “Development of Time Series Disaster Mapping Technologies through Natural Disaster Factor Spatial-Temporal Correlation Analysis and Integration: Focused on the Urban Disasters by Extreme Climate Change”, an initiative of the National Research Foundation of Korea.