Investigating the Formation and Subsurface Structure of a Large Water-Filled Basaltic Maar Volcano Using Constrained Potential Field Modelling, Lake Purrumbete Maar, Newer Volcanics Province.

Monday, 15 December 2014
Jackson Cornelius van den Hove, Laurent Ailleres, Peter Graham Betts and Ray A.F. Cas, Monash University, School of Earth, Atmosphere and Environment, Melbourne, Australia
Lake Purrumbete Maar of the Newer Volcanics Province, south-eastern Australia is one of the largest maar volcanoes in the world with a near circular crater up to 2800 m in diameter and hosting a 45 m deep crater lake. Surrounding tephra ring deposits are comprised of cross-bedded fine ash and lapilli-ash deposits typical of efficient subsurface phreatomagmatic eruptive activity. Erupted accessory lithics suggest subsurface phreatomagmatic activity occurred to a depth no greater than 250 m, whilst irregular clast shapes and peperitic textures observed in marl lithics suggest the host rock was poorly consolidated during eruptive activity. To further understand factors controlling Lake Purrumbete Maars immense size, high resolution lake and land-based gravity and magnetic data were collected for use in forward modelling of the subsurface architecture associated with the maar. Collection of gravity data presented a unique challenge due to the nature of measuring small changes in gravitational forces (<1 mGal) associated with the geology of the maar, on an inherently unstable water body. The magnetic anomaly over the maar shows irregular shaped high magnetic anomalies associated with several coalesced eruption points. 2.5-D forward models include five coalesced eruption points and an undulating shallow bowl-shaped diatreme structure, consistent with maars hosted within poorly consolidated sediments. 2.5-D forward models were used to produce a 3-D reference model for property and geometry inversions, to test and optimise the modelled features. Inversions suggest the major vents likely occur to a greater depth than 240 m as suggested in the initial reference model.