Dust Model Intercomparison and Extensive Comparison to Observations in the Western Mediterranean for the Summer 2012 Pre-ChArMEx/TRAQA Campaign

Tuesday, 16 December 2014: 11:20 AM
Sara Basart, Barcelona Supercomputing Center, Barcelona, Spain, François Dulac, LSCE Laboratoire des Sciences du Climat et de l'Environnement, Gif-Sur-Yvette Cedex, France and Jose M Baldasano, Barcelona SupercomputingCenter, Barcelona, Spain
The present analysis focuses on the model capability to properly simulate long-range Saharan dust transport for summer 2012 in the Western Mediterranean. In this period, Saharan dust events were numerous as shown by satellite and ground-based remote sensing observations.

An exhaustive comparison of model outputs against other models and observations can reveal weaknesses of individual models, provide an assessment of uncertainties in simulating the dust cycle and give additional information on sources for potential model improvement. For this kind of study, multiple and different observations are combined to deliver a detailed idea of the structure and evolution of the dust cloud and the state of the atmosphere at the different stages of the event. The present contribution shows an intercomparison of a set of 7 European regional dust model simulations (NMMB/BSC-Dust, ALADIN, Meso-NH, RegCM, CHIMERE, COSMO/MUSCAT; MOCAGE and BSC-DREAM8b). In this study, the model outputs are compared against a variety of both ground-based and airborne in situ and remote sensing measurements performed during the pre-ChArMEx/TRAQA field campaign which included in particular several AERONET sites, the airborne lidar LNG, sounding with a ULA and with the new balloonborne optical particle counter LOAC showing large particles (>15 µm), the CARAGA network of weekly deposition samples, etc. The models are also compared with satellite aerosol products (including MSG/SEVIRI, MODIS, POLDER and CALIOP), which provide a description of the spatial AOD distribution over the basin. These observational datasets provide a complete set of unusual quantitative constraints for model simulations of this period, combining data on aerosol optical depth, vertical distribution, particle size distribution, deposition flux, and chemical and optical properties.


Acknowledgements are addressed to OMP/SEDOO for the ChArMEx data portal and to CNES for balloon operations and funding. The other main sponsors of the campaign were ADEME and INSU under the umbrella of the programmes PRIMEQUAL and MISTRALS. LOAC was developed with funding from ANR. BSC acknowledges the support from the grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Government.