P41D-3957:
Valles Marineris as a Cryokarstic Structure Formed by a Giant Dyke System: Support From New Analogue Experiments
Abstract:
Valles Marineris is the most significant near-linear depression on Mars. It is some 4000 km long, up to about 200 km wide and some 7 km deep. Although its margins look parallel at first sight, the entire structure has a long spindle shape with significant enlargement in its middle (Melas Chasma) caused by cuspate slope retreat mechanisms. Farther to its north is Hebes Chasma which is an entirely closed depression with a more pronounced spindle shape. Tithonium Chasma is a parallel, but much narrower depression to its northeast. All these chasmae have axes parallel with one another and such structures occur nowhere else on Mars. A scabland surface exists to the east of the Valles Marineris and the causative water mass seems to have issued from it.The great resemblance of these chasmae on mars to poljes in the karstic regions on earth have led us to assume that they owed their existence to dissolution of rock layers underlying them. We assumed that the dissolving layer consisted of water ice forming substantial layers, in fact entirely frozen seas of several km depth. We have simulated this geometry by using bentonite and flour layers (in different experiments) overlying layers of ice in which a resistant coil was used to simulate a dyke. We used different thicknesses of bentonite and flour overlying ice layers again of various thicknesses. The flour seems to simulate the Martian crust better because on Mars, g is only about 3/8ths of its value on Earth, so (for equal crustal density) the depth to which the cohesion term C remains important in the Mohr-Coulomb shear failure criterion is about 8/3 times greater. As examples we show two of those experiments in which both the rock analogue and ice layers were of 1.5 cm. thick. Perfect analogues of the Valles Marineris formed above the dyke analogue thermal source complete with the near-linear structure, overall flat spindle shape, cuspate margins, a central ridge, parallel side faults, parallel depressions resembling the Tithonium Chasma. When water was allowed to drain from the beginning, closed depressions formed that have an amazing resemblance to Hebes chasma. We postulate that the entire system of chasmae here discussed formed atop a major dyke swarm some 4000 km length, not dissimilar to the 3500 km long Mesoproterozoic (Ectasian) dyke swarm disrupting the Canadian Shield.