P23A-3979:
SATURN'S AURORA OBSERVED BY CASSINI CAMERA IN VISIBLE WAVELENGTHS

Tuesday, 16 December 2014
Ulyana Dyudina1, Andrew P. Ingersoll2, Shawn Ewald1 and Danika F Wellington3, (1)Caltech, Pasadena, CA, United States, (2)California Institute of Technology, Pasadena, CA, United States, (3)Arizona State University, Tempe, AZ, United States
Abstract:
Cassini camera's movies in 2009-2013 show Saturn's aurora in both the northern and southern hemispheres. The color of the aurora changes from pink at a few hundreds of km above the cloud tops to purple at 1000-1500 km above the cloud tops. The spectrum observed in 9 lters spanning wavelengths from 250 nm to 1000 nm has a prominent H-alpha line and roughly agrees with the laboratory simulated auroras [1]. Auroras in both hemispheres vary dramatically with longitude. Auroras form bright arcs, sometimes a spiral around the pole, and sometimes double arcs at 70-75 both north and south latitude. 10,000-km-scale longitudinal brightness structures can persist for more than 100 hours. This structures rotate together with Saturn. Besides the steady structure, the auroras brighten suddenly on the timescales of few minutes. 1000-km-scale disturbances may move faster or lag behind Saturn's rotation on timescales of tens of minutes. The persistence of the longitudinal structure of the aurora in two long observations in 2009 and 2012 allowed us to estimate its period of rotation of 10.65±0.15 h for 2009 and 10.8±0.1 h for 2012. The 2009 north aurora period is close to the north branch of Saturn Kilometric Radiation (SKR) detected at that time. The 2012 south aurora period is longer than the SKR periods detected at the time. These periods are also close to the rotation period of the lightning storms on Saturn. We discuss those periodicities and their relevance to Saturn's internal rotation.

[1] Aguilar, A. et al. The Electron-Excited Mid-Ultraviolet to Near-Infrared Spectrum of H2:Cross Sections and Transition Probabilities. Astrophys. J. Supp. Ser. 177, 388-407 (2008).