EP13C-3535:
Turbulent Mixing and Flow Resistance over Dunes and Scours

Monday, 15 December 2014
Armin Arfaie1, Alan D Burns2, Robert Michael Dorrell2, Joris T Eggenhuisen3, Derek B Ingham2 and William D McCaffrey2, (1)University of Leeds, Leeds, LS2, United Kingdom, (2)University of Leeds, Leeds, United Kingdom, (3)Utrecht University, Utrecht, Netherlands
Abstract:
Flows in both submarine and fluvial channels are subject to lower boundary roughness. Lower boundary roughness occurs as frictional roughness suffered by the flow as it moves over the bed (skin friction) or drag suffered by the flow as it moves past a large obstacle (form drag). Critically, to overcome such roughness the flow must expend (lose) energy and momentum. However, whilst overcoming bed roughness the degree of turbulent mixing in the flow may be enhanced increasing the potential energy of the flow.

This is of key importance to density driven flows as the balance between kinetic energy lost and potential energy gained (through turbulent diffusion of suspended particulate material) may critically affect the criterion for autosuspension. Moreover, this effect of lower boundary roughness may go as far as helping to explain why, even on shallow slopes, channelized submarine density currents can run out over ultra long distances. Such effects are also important in fluvial systems, where they will be responsible for maximizing or minimizing sediment capacity and competence in different flow environments.

Numerical simulations are performed at a high Reynolds number (O (106)) for a series of crestal length to height ratio (c/h) at a fixed width to height ratio (w/h). Here, we present key findings of shear flow over a range of idealized bedform shapes. We show how the total basal shear stress is split into skin friction and form drag and identify how the respective magnitudes vary as a function of bedform shape and scale. Moreover we demonstrate how said bedforms affect the balance of energy lost (frictional) and energy gained (turbulent mixing). Overall, results demonstrate a slow reduction in turbulent mixing and flow resistance with decreasing bedform side slope angle. This suggests that both capacity and competence of the flow may be reduced through decrease in of the potential energy of the flow as a result of change in slope angles.