B23D-0230:
Microcosm Approach to Understanding Methane-oxidizing Communities and the Role of Nitrogen Sources
Tuesday, 16 December 2014
Ludmila Chistoserdova, Maria E Hernandez and Igor Oshkin, University of Washington Seattle Campus, Seattle, WA, United States
Abstract:
We will report our observations on the dynamics of bacterial communities in response to methane and nitrate stimuli in laboratory microcosm incubations prepared with Lake Washington sediment samples. The experiments were designed to test our hypothesis of methane oxidation as a communal function, with the specific contents of the communities being determined by environmental factors such as oxygen concentration and the nature of the nitrogen source. We first measure taxonomic compositions of long-term oxygenated enrichment cultures and determine that, while dominated by Methylococcaceae bacteria, these cultures also contain accompanying types belonging to a limited number of bacterial taxa, both methylotrophs and non-methylotrophs. We then follow with the short-term community dynamics, under different oxygen tension regimens (‘high’ to ‘low’), different nitrogen source regimens (added nitrate versus no nitrate) and different temperature ranges (10 to 30 oC). We observe rapid loss of species diversity in all incubations, but the composition of the communities depends on the specific environmental factors. Methylobacter represents the major methane-oxidizing partner in the communities incubated at low temperatures while Methylomonas and Methylocystis are more competitive at higher temperatures. All methanotrophs respond positively to nitrate. The non-methanotroph members of the communities reveal different trajectories in response to different oxygen tensions over time, with Methylotenera species persisting under ‘low’ and Methylophilus species persisting under ‘high’ oxygen tensions. Metagenomic sequencing reveals successions of different types of the major methane-oxidizing species as well as accompanying species. These types differ in their physiological details such as central carbon meand nitrate metabolism. A broad range of denitrifying capabilities in the organisms forming these stable methane-oxidizing communities is evident from genomic analysis. Our results support prior observations on distribution of carbon from methane among diverse bacterial populations and support the hypothesis of community function in cycling. Our data also suggest that oxygen and nitrate may simultaneously serve as electron acceptors during metabolism of methane.