B23D-0231:
The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs
Abstract:
Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a ‘bottom up control’ on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of < 62°C and by members of the Thaumarcheota at temperatures up to 90°C. Nitrification can thus be considered a ‘top down control’ on the structure of communities that develop in N limited environments.Our research in Yellowstone National Park (YNP) reveals a strong correspondence between the distribution of ammonia oxidizing archaea (AOA) and nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of these organisms in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter). These data suggest affinity for substrate and electron donor use play key roles in structuring the biodiversity of this hydrothermal community, and likely influences the structure of other N limited hydrothermal and non-hydrothermal ecosystems.