B21G-0157:
Soil Exometabolomics: An Approach to Investigate Adsorption of Metabolites on Soils and Minerals
Tuesday, 16 December 2014
Tami Swenson, Peter S Nico and Trent Northen, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Abstract:
A large fraction of soil organic matter (SOM) is composed of small molecules of microbial origin resulting from lysed cells and released metabolites. However, the cycling of these nutrients by microorganisms, a critical component of the global carbon cycle, remains poorly understood. Although there are many biotic and abiotic factors affecting the accessibility of SOM to microbes, adsorption to mineral surfaces is among the most important. Here, we are developing exometabolomics methods to further understand the types of microbial metabolites remaining in the water extractable fraction of SOM (WEOM). To estimate which compounds adsorb to a sandy loam soil (obtained from the Angelo Coast Range Reserve in Mendocino, CA), an extract was prepared from the soil bacterium Pseudomonas stutzerii RCH2 grown on 13C acetate. This approach produced highly labeled metabolites that were easily discriminated from the endogenous soil metabolites by gas chromatography/ mass spectrometry. Comparison of the composition of the fresh bacteria extract with what was recovered following a 15 min incubation with soil revealed that only 26% of the metabolites showed >50% recovery in the WEOM. Most cations (polyamines) and anions showed <10% recovery. These represent metabolites that may be inaccessible to microbes in this environment and would be most likely to accumulate as SOM presumably due to binding with minerals and negatively-charged clay particles. Ongoing studies are focused on comparing the adsorption capacity of bacteria extract with several minerals (ferrihydrite, goethite, meghemite, lepidocrocite). Varying conditions such as metabolite-mineral contact time (ranging from hours to days) and temperature (4-37°C) will provide insight into how microbial metabolites behave in a given mineral-rich environment under certain climatic conditions.