Nucleation of the 2014 Pisagua, N. Chile earthquake : seismic analysis of the foreshock sequence.

Wednesday, 17 December 2014
Amaya Fuenzalida1, Hernando Tavera2, Sergio Ruiz3, Isabelle M A Ryder4, Efrain Fernandez2, Thomas Garth1, Oscar D.L.Neto5, Marianne Metois6, Silvio De Angelis7 and Andreas Rietbrock1, (1)University of Liverpool, Liverpool, United Kingdom, (2)Instituto Geofísico del Perú, Lima, Peru, (3)University of Chile, Santiago, Chile, (4)University of Liverpool, Liverpool, L69, United Kingdom, (5)USP University of Sao Paulo, São Paulo, Brazil, (6)National Institute of Geophysics and Volcanology, Rome, Italy, (7)Organization Not Listed, Washington, DC, United States
The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap. This part of the subduction zone was believed to have not experienced a large earthquake since 1877. As part of an international collaboration the "The Integrated Plate boundary Observatory Chile (IPOC)" network was installed in 2007 to monitor this region. As well as recording the 2014 Pisagua mainshock, the IPOC network was able to record the full foreshock and aftershock sequences, providing a unique opportunity to study the nucleation and rupture process of large megathrust earthquakes.

As most seismic activity occurred ~100 km offshore of the coastline, the onshore nature of the network only covers the rupture area to the east resulting in poor azimuthal coverage and hindering accurate depth estimation of seismic events. To improve the location accuracy of the Pisagua seismic sequences, we installed a temporary seismic network that was operative from 1 May 2014. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and three stations at the slopes of Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake.

Our study focuses on the nucleation area, where part of the precursory sequence and a slow slip event occurred (Ruiz et al., 2014). This region became significantly stronger in the two weeks preceding the Pisagua mainshock. On 16 March 2014 the strongest foreshock (Mw 6.7) occurred offshore of Pisagua with a centroid depth of 10 km, shallower than the estimated subduction interface.

In this study aftershock locations are further constrained using observations from the new network installed in Peru. We carefully estimate event locations and we compute regional moment tensor solutions by 1-D full waveform inversion of the broadband data. To improve our solutions, we are currently relocating aftershocks, to correct for foreshock mislocations by using the double-difference earthquake location algorithm and including cross-correlation methods.