H31B-0611:
Availability Of Deep Groundwater-Derived CO2 For Plant Uptake In A Costa Rican Rainforest

Wednesday, 17 December 2014
Steven F Oberbauer1, David P Genereux2, Christopher L Osburn3, Diego Dierick1 and Diana Oviedo Vargas2, (1)Florida Intl Univ, Miami, FL, United States, (2)North Carolina State Univ, Raleigh, NC, United States, (3)N Carolina St Univ--MEAS, Raleigh, NC, United States
Abstract:
The role of export of carbon via surface waters has been increasingly appreciated as an important component of ecosystem carbon budgets. However the role of deep regional groundwater as a source of carbon to ecosystems is relatively poorly known. In a lowland rainforest in Costa Rica, inputs of elevated dissolved inorganic C (DIC) in regional groundwater greatly increase stream water C concentrations. Whether that groundwater-derived carbon represents a significant source of elevated CO2 for photosynthesis of riparian plants is unknown. We compared the concentration and δ13C of COin the air above two weir-equipped streams with different inputs of high-DIC regional groundwater. The Taconazo has no inputs, whereas about 40% of stream discharge of the Arboleda is a result of regional groundwater. DIC from regional groundwater experiences little to no within-watershed sequestration and thus augments the C flux out of the watershed with stream flow and possibly the degassing flux from the stream.

CO2 concentrations were recorded by Vaisala GMP343 gas analyzer over 24 hr periods above the weirs and in the splash zone below the weirs as well as at a small waterfall on the Sura, the higher order stream that the Arboleda joins, approximately 250 m downstream of the junction. Samples of air δ13C-CO2 taken from unmixed (early morning) and mixed (afternoon) canopy air were measured by mass spectrometer. Concentrations of CO2 at both sites on the Taconozo remained in the normal range of canopy storage of respiratory CO2 (< 600 ppm). In contrast, [CO2] above the Arboleda weir occasionally exceeded 1000 ppm and were generally above normal values of respiratory CO2. Values below the weir by the splash zone were often higher than 1500 ppm and occasionally exceeded 2000 ppm. At the Sura waterfall pulses of high CO2 > 1000 ppm occurred regularly throughout the day. We found higher δ13C-CO2 above the Arboleda compared to the Taconazo, consistent with an enhanced flux of isotopically-heavy CO2 from the Arboleda stream. Keeling plots of samples taken at the Arboleda and Sura deviated from those over the Taconazo and indicated a source of 13C other than atmospheric air and respired CO2. Our data suggest that CO2 from regional groundwater has the potential to be available to riparian plants, but primarily at areas of turbulent water flow.