Controls on diurnal streamflow cycles in a high altitude catchment in the Swiss Alps

Thursday, 18 December 2014
Raphael Mutzner1, Steven V Weijs1, Paolo Tarolli2, Marc Calaf1,3, Holly J Oldroyd1 and Marc B Parlange1,4, (1)EPFL Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, (2)University of Padua, Padua, Italy, (3)University of Utah, Salt Lake City, UT, United States, (4)University of British Columbia, Civil Engineering, Vancouver, BC, Canada
The study of streamflow diurnal cycles is of primary importance to understand hydrological processes happening at various spatial scales. In high altitude alpine catchments, streamflow diurnal cycles are typically dominated by snow or icemelt. During a field campaign in the summer 2012 in a small catchment in the Swiss Alps (Val Ferret catchment, draining area of 20.4 km2, mean altitude of 2423 m above sea level (asl), ranging from 1773 m to 3206 m asl, glaciarized area: 2%), we observed streamflow diurnal cycles throughout the season in two monitored sub-basins of the watershed. To study in detail the diurnal cycles, we make use of a wireless network of meteorological stations, time-lapse photography, a fully equipped energy-balance station and water electrical conductivity monitored at the gauging stations.

In the first sub-basin, we observed a transition from a snowmelt to an evapotranspiration induced diurnal streamflow cycle. In the second sub-basin, we observed a snowmelt/icemelt dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between icemelt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign. The amplitude of the icemelt cycle decreased exponentially during the season and was larger than of the amplitude of the evapotranspiration cycle which was relatively constant during the season.

A conceptual model was applied to estimate the effect of evapotranspiration on the diurnal streamflow cycle in the icemelt dominated sub-basin. The model makes use of the latent heat measured at the energy balance station, the streamflow loss due to evapotranspiration and the computation of active evapotranspiration areas. Our study suggests that evapotranspiration from the riparian area damps the icemelt-diurnal streamflow cycle resulting in a possible underestimation of glacier mass changes.