A13D-3204:
An Improvement of Fine Scale Wind Field Prediction using WRF/MMIF Models for CALPUFF Application.
Abstract:
Accurate simulation of CALPUFF dispersion modeling is largely dependent on the data sets which are properly resolved in the spatial and temporal evolution of meteorological field on a wide range of scales. The fine scale field wind of 100 m spatial resolution is required for the CALPUFF modeling in the complex terrain near the coastal area.The objective of this paper is to provide information how to calculate the fine scale wind field using recent advances in the meteorological model. The diagnostic model of CALMET has been used to generate fine grid scale wind field by interpolating output of mesoscale prognostic weather models of MM5 (short for Fifth-Generation Penn State/NCAR Mesoscale Model) and WRF (Weather Research and Forecast). The MMIF(The Mesoscale Model Interface Program) interfacial program directly converting WRF meteorological output to formats appropriate for CALPUFF modeling without diagnostic interpolations is recently developed.
The modeling comparison between WRF/CALMET and WRF/MMIF was carried out to find out a best way in generating fine wind field in the complex geological conditions. For the WRF/CALMET modeling, WRF model output of 900m grid resolution was provided to CALMET model and CALMET then calculated the fine grid resolution of 100m by diagnostically interpolating the WRF output. For the WRF/MMIF modeling, the WRF model directly calculate the fine grid of 100m and the MMIF program was used to convert WRF data.
In order to validate model performance of two methods, simulated variables of meteorological fields were compared with observations at the landfill site near the coast in KOREA. It is found that WRF/MMIF is in better agreement with observations than CALWRF/CALMET in respect to the statics of RMSE and IOA. CALPUFF modeling with landfill emission data of H2S was performed and compared with monitoring data to identify effects on meteorological data on the final outcome of CALPUFF dispersion modeling.