Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

Tuesday, 16 December 2014
Wei Xie, Chuanlun L. Zhang, Peng Wang, Xuedan Zhou and Wenting Guo, State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.