OS23A-1176:
Partitioning Nitrification Between Specific Archaeal and Bacterial Clades in a Large, Nitrogen-Rich Estuary (San Francisco Bay, CA)

Tuesday, 16 December 2014
Julian Damashek, Karen L Casciotti and Christopher A. Francis, Stanford University, Environmental Earth System Science, Stanford, CA, United States
Abstract:
Nitrification is the sole link between nitrogen inputs and losses in marine ecosystems, and understanding the microbial ecology and biogeochemistry of nitrification is therefore crucial for understanding how aquatic ecosystems process nitrogen. Recently-discovered ammonia-oxidizing archaea (AOA), rather than ammonia-oxidizing bacteria (AOB), appear to drive ammonia oxidation in many ecosystems, including much of the ocean. However, few studies have investigated these microbes in estuary waters, despite the fact nitrogen concentrations in estuaries are often far higher than the ocean, and can cause drastic ecological harm. We sought to determine the roles of AOA and AOB in driving pelagic nitrification throughout San Francisco Bay, by combining biogeochemical rate measurements with a suite of measurements of the abundance and diversity of AOA and AOB. It addition to traditional functional gene analyses and high-throughput 16S amplicon sequencing, we developed novel qPCR assays to selectively target the ammonia-oxidizing clades found in this estuary, which gave insights into clade-specific distributional patterns. Our biogeochemical data suggest a sizable fraction of ammonium in the bay is oxidized in the water column, likely by AOA, with nitrification in bottom waters also oxidizing a substantial portion of the ammonium exuded by sediments. Generally, Sacramento River waters and Suisun Bay bottom waters had the highest nitrification rates. AOA outnumbered AOB at most stations, and were present in high abundance at both the marine and freshwater ends of the estuary, while AOB abundance was highest in the low-salinity, brackish regions. Different archaeal clades were found at either end of the estuary, suggesting strong niche partitioning along the salinity gradient, with a third clade present largely in brackish waters. This work helps to assess the ability of ammonia-oxidizing microbes in estuaries to transform nitrogen prior to water discharge into the sea, and furthers our understanding of the roles of specific clades of these microbes in complex estuarine ecosystems.