H14F-07:
A new framework for quantifying uncertainties in modelling studies for future climates – how more certain are CMIP5 precipitation and temperature simulations compared to CMIP3?

Monday, 15 December 2014: 5:30 PM
Ashish Sharma, University of New South Wales, Sydney, NSW, Australia, Fitsum Markos Woldemeskel, University of New South Wales, Sydney, Australia, Bellie Sivakumar, University of New South Wales, School of Civil and Environmental Engineering, Sydney, NSW, Australia and Rajeshwar Mehrotra, University of New South Wales, School of Civil and Environmental Engineering, Sydney, Australia
Abstract:
We outline a new framework for assessing uncertainties in model simulations, be they hydro-ecological simulations for known scenarios, or climate simulations for assumed scenarios representing the future. This framework is illustrated here using GCM projections for future climates for hydrologically relevant variables (precipitation and temperature), with the uncertainty segregated into three dominant components – model uncertainty, scenario uncertainty (representing greenhouse gas emission scenarios), and ensemble uncertainty (representing uncertain initial conditions and states). A novel uncertainty metric, the Square Root Error Variance (SREV), is used to quantify the uncertainties involved. The SREV requires: (1) Interpolating raw and corrected GCM outputs to a common grid; (2) Converting these to percentiles; (3) Estimating SREV for model, scenario, initial condition and total uncertainty at each percentile; and (4) Transforming SREV to a time series. The outcome is a spatially varying series of SREVs associated with each model that can be used to assess how uncertain the system is at each simulated point or time. This framework, while illustrated in a climate change context, is completely applicable for assessment of uncertainties any modelling framework may be subject to.

The proposed method is applied to monthly precipitation and temperature from 6 CMIP3 and 13 CMIP5 GCMs across the world. For CMIP3, B1, A1B and A2 scenarios whereas for CMIP5, RCP2.6, RCP4.5 and RCP8.5 representing low, medium and high emissions are considered. For both CMIP3 and CMIP5, model structure is the largest source of uncertainty, which reduces significantly after correcting for biases. Scenario uncertainly increases, especially for temperature, in future due to divergence of the three emission scenarios analysed. While CMIP5 precipitation simulations exhibit a small reduction in total uncertainty over CMIP3, there is almost no reduction observed for temperature projections. Estimation of uncertainty in both space and time sheds lights on the spatial and temporal patterns of uncertainties in GCM outputs, providing an effective platform for risk-based assessments of any alternate plans or decisions that may be formulated using GCM simulations.