Sensitivity of Scattering and Backscattering Coefficients to Microphysical and Chemical Properties: Weakly Absorbing Aerosol

Wednesday, 17 December 2014
Evgueni Kassianov1, Jim Barnard1, Mikhail Pekour1, Larry K Berg1, John Shilling1, Connor Joseph Flynn1, Fan Mei1 and Anne Jefferson2, (1)Pacific Northwest National Laboratory, Richland, WA, United States, (2)University of Colorado at Boulder, Boulder, CO, United States
Scattering and backscattering coefficients of atmospheric aerosol are crucial parameters for numerous climate-relevant applications, including studies related to the Earth’s radiation budget. Due to their strong connection to aerosol chemical and microphysical characteristics, in situ measurements have been commonly used for evaluating optical properties routines in global and regional scale models. However, these in situ measurements, including size distribution and chemical composition data, can be subject to uncertainties. Techniques for obtaining these data depend on particle size (submicron versus supermicron) and relative humidity range (dry versus wet conditions). In this study, we examine how the data uncertainties can impact the level of agreement between the calculated and measured optical properties (commonly known as optical closure). Moreover, we put forth a novel technique for inferring in parallel the effective density and real refractive index of weakly absorbing aerosols from simultaneously measured size distributions (with mobility and aerodynamic sizes), and two optical properties, namely the scattering coefficient and hemispheric backscatter fraction, measured by integrating nephelometer. We demonstrate the performance of our technique, which permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10-micron particles, using both a sensitivity study with synthetically generated inputs with random noise and a six-week case study with real measurements. These measurements cover a wide range of coastal summertime conditions observed during the recent Two-Column Aerosol Project (TCAP, http://campaign.arm.gov/tcap/) and include periods with a wide range of aerosol loading and relative humidity. Finally, we discuss how in situ data and retrievals of aerosol characteristics can be applied for model evaluation.