ED11A-3392:
Wintertime Experimental investigation of Morphology, Mixing States and Columnar Optical Properties of Aerosols over a Desert location in India

Monday, 15 December 2014
Sumit Mishra1, Tulsi Kumar1, C Sharma1, M. V. S. N. Prasad1, Sukhvir Singh1, R Agnihotri1, B. C. Arya1, B Gupta1, T. Naaraayanan1, S. Gautam1, D. Kumar1, K. N. Sood1, J. S. Tawale1, A K Sharma2 and A. K. Mitra2, (1)National Physical Laboratory, New Delhi, India, (2)India Meteorological Department,, New Delhi-110003, India
Abstract:
Indian Desert (The Thar Desert) is considered as the source of mineral dust in the Indo-Gangetic Plain (IGP) especially in pre-monsoon period due to large scale convective activities during hot summer. To study the physico-chemical characteristics of aerosols over the Thar Desert (Jaisalmer, Rajasthan) during winter (December, 2013), a field campaign has been carried out in Jaisalmer in Rajasthan state. Experiments were conducted inside the city as well as far from the city. The faraway location is close to international border of another country i.e. Pakistan. PM2.5 and PM10 were collected within the city while PM5 was collected far from the city. Particles were collected on Teflon filters for bulk analysis with Fourier Transform Infrared Spectroscopy (FTIR), on Tin substrate for individual particle morphology and elemental composition analysis with Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and on the Cu-TEM grid for individual particle morphology and mixing state characterization using High Resolution-Transmission Electron Microscope (HRTEM). Together with this, aerosol size distribution observation and columnar spectral aerosol optical properties have been carried out with OPC (Optical Particle Counter, GRIMM Model 1.108) and hand held Microtops-II, respectively.

HRTEM analysis reveals occurrence of carbonaceous fractals found in various mixing states 1) aged with some hygroscopic species 2) embedded in sulfate host 3) semi-externally mixed with sulfate and other species. Core-shell particles were also observed with varying core composition (carbon, typical mineral dust, and calcite) and shell thickness (shell comprising of water). The back trajectory analysis reveals the source of wind from Karachi and Islamabad from Pakistan which may be the potential source of carbonaceous species over the sampling site. SEM-EDS analysis reveals occurrence of mineral dust 1) pure mineral dust (Ca and Si rich) 2) polluted mineral dust (mixed with carbon and Cr) together with some pollutants (rich in carbon, S, K, Cl, Mo and Nb). Signatures of various organics were traced using FTIR. Aerosol columnar spectral optical properties, size distribution and meteorology in tandem with aforementioned aerosol properties will be discussed in detail during the presentation.